Poly(2-hydroxyethyl methacrylate) film as a drug delivery system for pilocarpine.

نویسندگان

  • G H Hsiue
  • J A Guu
  • C C Cheng
چکیده

This work investigates pilocarpine trapped in a matrix diffusion-controlled drug delivery system using hydrophilic inserts of Poly(2-hydroxyethyl methacrylate) (pHEMA) to ensure an increased bioavailability of pilocarpine and prolong the length of time in which the medication remains in the eyes of the test subjects. The physical and chemical properties of pilocarpine were investigated to elucidate the mechanism of drug-polymer interaction and the effect on drug release behavior of controlled release polymeric devices. In vitro release studies indicated that pilocarpine continued to be released from the inserts for a 24 h period. The results of intraocular pressure tests performed on albino rabbits were consistent with the observed in vitro behavior. The pressure decrease was significant for a period longer than 48 h. It confirms that the inserts, as sustainable releasing devices, are promising carriers for ophthalmic drug delivery systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feedback-regulated paclitaxel delivery based on poly(N,N-dimethylaminoethyl methacrylate-co-2-hydroxyethyl methacrylate) nanoparticles.

pH-Sensitive poly(N,N-dimethylaminoethyl methacrylate (DMAEMA)/2-hydroxyethyl methacrylate (HEMA)) nanoparticles were prepared for the triggered release of paclitaxel within a tumor microenvironment. Tumors exhibit a lower extracellular pH than normal tissues. We show that paclitaxel release from DMAEMA/HEMA particles can be actively triggered by small, physiological changes in pH (within 0.2-0...

متن کامل

Hydrophilic molecularly imprinted poly(hydroxyethyl-methacrylate) polymers.

Highly cross-linked 2-hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol) dimethacrylate with poly(ethylene glycol) of molecular weight 600 (PEG600DMA) were molecularly imprinted with hydrophilic templates glucose and proxyphylline using water as a solvent. Glucose-imprinted polymers showed increased recognitive capacity compared to nonimprinted polymers as well as increased glucose upta...

متن کامل

Construction of paclitaxel-loaded poly (2-hydroxyethyl methacrylate)-g-poly (lactide)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine copolymer nanoparticle delivery system and evaluation of its anticancer activity

BACKGROUND There is an urgent need to develop drug-loaded biocompatible nanoscale packages with improved therapeutic efficacy for effective clinical treatment. To address this need, a novel poly (2-hydroxyethyl methacrylate)-poly (lactide)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine [PHEMA-g-(PLA-DPPE)] copolymer was designed and synthesized to enable these nanoparticles to be pH responsiv...

متن کامل

Poly-HEMA as a drug delivery device for in vitro neural networks on micro-electrode arrays.

Delivery of pharmacological agents in vitro can often be a difficult, time consuming and costly process. In this paper, we describe an economical method for in vitro delivery using a hydrogel of poly hydroxyethyl methacrylate (PHEMA) that can absorb up to 50% of its weight of any water-solubilized pharmacological agent. This agent will then passively diffuse into surrounding media upon applicat...

متن کامل

Ultrasonically controlled release of ciprofloxacin from self-assembled coatings on poly(2-hydroxyethyl methacrylate) hydrogels for Pseudomonas aeruginosa biofilm prevention.

Indwelling prostheses and subcutaneous delivery devices are now routinely and indispensably employed in medical practice. However, these same devices often provide a highly suitable surface for bacterial adhesion and colonization, resulting in the formation of complex, differentiated, and structured communities known as biofilms. The University of Washington Engineered Biomaterials group has de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 22 13  شماره 

صفحات  -

تاریخ انتشار 2001